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int roduction and statement of theorems

For a finite set X, !X~ will denote the number of elements

of A • An incidence structure is an ordered triple (P ,L,I)

where P and L are disjoint sets and I C P x L • Elements of

r will be called points or vertices and elements of L lines.

A line 2 and a point p are called incident if f (p,L) E I

~~ also say in this case that 2 contains p or p lies on t

Two lines f and n~ are said to intersect iff they have a conunon

incident point. With any incidence structure (P,L,I) is associated

its dual incidence structure (L,P,I*) where 1* = ((L,p):(p, t) E iJ.

if L is a set o~ subsets of P and (p, L) € I 1ff p E 2 , we

will refer to (P ,L ,I) as (P,L,E) or (P,L) . The dual of

(P,L,E) will be written as (L,P,~ ) . If each element of L and

P is a set and (p,L) E I 1ff p ~~ 2 , we write (P,L,I) as

(P,L,c) and ite dual as (L,P,~) • For a line 2 , P~ will denote

the set of points incident with line 2 • If P2 is a f inite set, we

write ) c (~ ) for the cardinality of P~, . Similarly, for a point

p, denotes the set of lines 2 incident with the point p and

we write r(p) for • An incidence structure is said to be

simple iff for any two distinct lines 2 and 2’ , P~ ~ P1, . Incidence

structures (P,L,I) and (P’,L’ ,I’) will be called iso!norphlc itt

there exist bi ,~ections a: P -. P’ and 1: L # Lt such that (p,L) € I

1ff (c(p) , ¶( L ) )  E I’ . 
—

%,CftII

An incidence structure i~ = (P,L,i) is said to be finite 1ff ~I’II

•~
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both P and L are finite sets. All incidence structures in this

paper are finite. For a finite incidence structure, we w ill set

r(n) = mintr(p):p E P1 and k(x) = mln(k(L):L E LI. Let q be a

positive integer. If q = 1 , we define s(7~,q) to be equal to

If q > 2 , we define s(g,q) to be the unique real number

s which satisfies q
S~~ 1 = k(n)(q-l) . If q = 1 , we define

d(n,q) to be equal to r(i~) + s(,~, q)- 1 • If q > 2 , we define

d(n ,q) to be the unique real number d w’~’~ h sat isfies qd_8(*,q) + 1_~

= (q- l ) r( ic) .  We normally write s(,f ,q) as 8(x) and d(x ,q) as d(n) .

The incidence itr ucture x Is said to be semii inear  1ff Vp,p ’ ~c P

p 1 p ’ , ~ at most one line 2 incIdent with both p and p ’. Let r and

k be positive integers. A san luinear Incidence structure g is said to be an

(r,k) incidence structure 1ff for every point p, r(p ) — r and every line 2,

k(L)  = k • Let y~ be a semilinear incidence structure and 2 and

m be two lines. A line n will be called a transversal of 2 and

m 1ff n inters ects both 2 and m and P fl P ~‘ P fl P • An 2 n m

seznilthear incidence structure n is sa id to sat isfy Pasch ’s axicin

1ff for any pair of intersecting lines m1 and m
2 and any pair

of transversals n
1 

and a
2 

of and m
2 ‘ ~ 

intersects a2
A subset F C P is called a flat 1ff V 2 E L , ~l F > 2 Implies

P2 C F • Clearly, any intersection of flats is a flat . For S C P ,

the flat < S  >= fl F is said to be the flat generated by S • For
F~~any flat F , rank F Is the smallest integer n such that there

exists a set S C P , 15 1 = a and < S  >— F • The rank of the flat

P is called rank ~

— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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A ~ i zr p i e  graph is a s imple inc idence structure i n wh ich every

line i.s incident with exactly two points. Points and lines of a

simple graph will usually be called vertices and edges , respectively-.

Two iert ices p and p ’ will be called adjacent 1ff there exists

an edge ~ incident with p and p ’ . Adjacency is a symmetric

relat i on on the set of vertices of a graph and determines a simple

graph completely. All graphs cons idered in this paper will be finite

and - irnple. Let G be a simple graph with vertex set V and edge

set E . Let n be a nonnegative integer. A path of length n from

u to v Is a sequence (u = v0, L~, v,~, £2, v2, ... , L~, v~ = v)

where is an edge incident with v~~1 and v~ , I =

II I’ the vertices v0, v1, • ..  
~ 

are all distinct, then the path

s said to be simple. If for any two vertices u and v there exists

a path from u to v , then the graph G is said to be connected.

In a connected graph G the distance d(u ,v) between two vert ices

u and v is the smallest nonnegative integer n such that a path

of length n from u to V in G exists.

Let ~r = (P,L,I) be an incidence structure. The adjacency graph

G(n )  of it is a graph having vertex set P and two vertices adjacent

1ff scine line of it contains both. The graph G(it *) of the dual

incidence structure it* will be called the line graph of it

Distance between two points p and p ’ of it will be same as the

distance between them in G(it ) . For S C P and 2 , in E L , we

will set d(L,S) = min (d(p,p’): p ’ € S , p Incident with LI and

d ( L ,m )  = min (d (L ,p): p incIdent with ml where d(p,p ’) is the

distance between the vertices p and p ’ in G (x) . Scinetlines the

points of it will be called vertices .

-- ~~~~~~~~-~~
-- — — — -_-_;--
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Let q ~
> 2 be a prime power and 1 <3 < d be integers.

Let V be a d-dlinensiona]. vector space over a finite field of

order q . Let be the set of i-dimensional subspaces of V ,

1 < I < d . Let (w5 1  , W~ , c) be the incidence structure whose

points are (s_l)_dijnensiona l subspaces, lines are 8-dimensional

subspaees and incidence is set lnclusion• Any incidence structure it

ison~orphic to (w 1, W~, C) will be called an (s,q,d) projective

incidence structure (p.i.s.). For q = 1 , also we define an

(s,l,d)-projective incidence structure. Let Y be a finite set

with !Y 1 = d • A subset Y’ C Y is called an i-subset of’ y 1ff

= I • Let be the set of i-subsets of Y . Any incidence

structure isomorphic to (z 51, z 5, C) will be called an (s,l,ci)

projective incidence structure. The incidence structure (W
d s÷j)

W
d

is dual to (w ,w , c) . Also, (z ,Z , ~) is dual to
s-i s d-~il d-5

(Z~;1~Z5~ ~
)

The following classical theorem about finite projective spaces

characterizes (2,q,d)-projective incidence structures for d > 14

Theorem Let it be a finite incidence structure satisfying

(p1) There exists exactly one line joining two distinct points.

(p2 ) Every line contains at least three points.

— 
(p3) Pasch’ s axio~r .

(p1~) Itank of ~t

Then there exists a prime power q > 2 and an integer d > 14 such

that it is a (2,q,d)-projective incidence structure. Conversely,

any (2,q,d)-projective incidence structure with d > 14 , q > 2

satisfies (p1) — (pa )

Extend ing this classical theoren, we prove a characterization

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ - .~ — .~ —- , - ~~~~~~~~~~~~~~~ ~~~~~
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of (s,q,d)-projective incidence structures when 3 < a < d-1.

Theorem 1. Let q > 1 be an integer and it be a finite incidence

structure satisfying

(ri) 3 < s(n,q) d (it,q) - i

(f2) There exists at most one line joining two distinct points.

(r3) it’ p is a point and 2 is a line such that d(p, L) = 1, then

there are exactly (q + 1) lines which pass through p and

intersect £

(f4) If p and p ’ are two distinct points such that d(p,p’) 2 ,

then there are exactly (q + 1) lines £ such that L passes

through p ’ and d (p, L) 1

(f5 ) G(it) Is connected.

Then s = s(,t ,q) and d = d(it ,q) are integers , q. = 1 or a prime

power and it is an (s,q,d)- projective incidence structure. Conversely,

for 3 < s < d - 1 , any (s ,q,d)-projective incidence structure

satisfies (fl) -(f5)

We also show that the axioms (fi ) - (f 5) are minimal for the purpose

of characterizing (s ,q,d)_p. ies., 3 < a < d  - 1 • For any choice of

j ~(1,2,3,14,51 , there exists incidence structures it ’ which satisfy the

four axioms other than (ri ) anti is not an (s ,q,d)-p.i.s. with 3 < s < d  - 1.

A finite incidence structure x satisfying (f2 ) - (r5) is called an (s,q,d)-

pseudo projective incidence structure ‘where s(x ,q) s and d(x ,q)— d. The axiom

(f 5) in the statenezit of Theoren 1 Is not an essential axicin. Let it
1 

=

(p . ,L1,11) , 
I = 1,2 be two incidence structures such that P1 fl P2

fl L~ = • We define the direct sum 
~ — x1 + x2 by

- 

-
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= (n~ U r~ ~~ 
U L~ , i) where (p, L) E I 1ff ~i , 1 < i < 2

p ~ P . , ~ E i~~ , and (p, 2) ~ 1.

Theoren 2. Let q > 1 be an integer and it be a finite incidence

~-tructu-e satisf’ying the axioms (fi )  - (f’14 ) . Then q = 1 or a prime

powe r and is isororphic to the direct sins of one or more projective

r1r~’~~r~cr structures. Conversely , if q = 1 or a prime power and

3 < s - 1 and is the direct s~nr of several (a 1,q, d 1)— p.i.s.

w ’r~re 3 < s .  < d. — 1 , then it satisfies axioms (fi ) - (r 14).

~it 1ine r~r the Proof. Let it be an (s ,q,d)-pseudo projective

~nc~dence stueture. Let rn and n be two lines containing a common

po i nt 0 . A line £ is said to be a transversal of in and n iff

~nter sects both and n and does not contain 0 • Let C(m ,n)

be t !:e set o~f’ l ines containing the transversals of in and n and

all lines ~ which contain 0 and intersect at lea... one transversal

of r and n • C (ir ,n) is called the plane generated by m and n.

I~~t (~ be the set of all planes. One of’ the important steps in the

pr o~~ i s  to show that the incidence structure (L,C.,E) is an (s+1,q,d)—

pseudo proJective incidence structure. One starts with an (s,q,d)-

pseudo p.i.s. and finally obtains an (d-].,q,d)-pseudo p.i.s. which is

then shown to be the dual of a projective space.

I—

‘ 
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2. Preliminary propositions

Lemma 1. Let q > 1 be an integer , it be a f ini te  inc idence structure

~~~~H ;  that r(p) and k(L)  are positive for all point s p and line L

T.c’t it sat~ sf’y the axioms (f2) ,(f ’3 ) and (f5) and r = r( i t) ,  k =

Then ~s an (r,k)-incidence structure.

Proof: Let it = (P,L,I) . To show that V £ E L , k(L) = k ,

it i.s sufficient to show that V 2’ E L , k( L) = k(t’) . Let £

and L’ be two intersecting lines and z be the coimnon point . We

calculate

b = j[(p,p’) (p,L) E I , (p’,L’) E I , p,p~ ~ z ,

d(p,p ’) =

For every point p ~ z of A , d( p, L’ )  = 1. So there are q points

p ’ of’ 2’ such that d(p,p’) = 1 and p ’ ~~ z . Hence , b = (k (L)_ 1)(q ) .

By synirnetry b = (~~(L ’ )—1 ) (q )  . Since q > 1 , k(2) = k(L’) • Let

£ and 2 ’ be any two lines. Since G (it ) is connected , we can

f ind a sequence L~ = 2 , L
~ ‘ 

L2, • . .  ~ L~ = 2’ such that 2j l  and

A . intersect for l,2 ,•. ., i . Since k(L~ ...1) = k (L~ ) for

j 1 , 2 , ... , I , it follows that k(L’) = k(L) . It is easily

checked that the dual incidence structure ,t* satisfies (f2 ) , (f3 )

and (f 5). Therefore , we get r(p ) = r(p ’) , V p , p ’ € P and hence,

r(p ) = r , V p  E r .

Lenmia 2. Let q = 1 or a prime power and 3 <a < d-]. be

integers . Then any (s ,q,d)-project ive incidence structure is an

(z ,q,d)-pseudo projeetive incidence structure.

Proof: First we consider the case q a prime power, q > 2

Let it = (w5 1 , W5, C) be an (a ,q,d)-projective incidence structure

7 

‘. Z . 7~~~~ 
—S - - ~~~~~~~~~~ -~~~~—‘

_-.= ~~~—.‘.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S
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‘:hor 3 < S ( !-2 Ll.flO w . is the set of i - dimens ional subspaces

,~ a .i .~~~t. V f dimension d. over GF(q) , 0 < I < d

Ti ’e number of’ (s_1 )-dimenzional subnpaces contained in an s-dimensional

zubrpace is .
~4 and hence , k(it ) = and s (it ) = a

ir~ iarIy, the number of s-dimensional subspaces containing a given

d.-s+l d-s+l
(s -l)-diir~ensional subspace is 

~ q ~
‘• Therefore , r( i t)  = 

g 
q -

and ](it) d . The axiom (fl ) holds since 3 <a < d-2 • Let p

and p ’ be two (s -1)-dimensional subspaces and £ be an s-dimens ional

subopace such that p, p ’ C 2 • Then 2 is the subspace spanned by

p and p ’ • Hence , there exists at most one line joining p and p ’

and it is semulinear. Let p and p ’ be two (a -1)-dimensional

subspaces such that (U,
1 
, , • . .  , u~ , V

1 ~ • . .  , v5~~) and

(u1,u2, ... , u . , w1, w2, ... , w5~~ ) are respectively bases of p

and p ’ , 0 < i <s..1 . Let p,~ be the subspace spanned by

(U i, 
u2, ... , u .  , w1, v2, ... , w . , v~~1, ... v8 1 ~) , j =O,l, ... , 5— i

Then i 0 = P ann p5 ••• 1 P ’ and P~ and P~~1 are adjacent In G(i t )

Hence , there exists a path joining p and p ’ in G(x) . This

establishes that G( i t )  is connected. Let p € W5 1  and £ E W5 such

t hat d(p , A) = 1 . Then p ~ A and there exists an A’ E W5 such

that p ~ A’ and £ fl 2’ E W5 1  . It follows that p fl 2 = u is an

(~ -2 ) -dimens ional subspace. There are (q + 1) (s-l ) -dimensiona i.

subspaces p1 , 1 < i < q+1 such that u C p
1 

C 2 • Let £
~ 

= < p,p
1 
>

Then L~ , 1 < I < q-s-1 are the only lines of it which contain p and

intersect A in a point . It follows that it satisfies (f3). Let

p , p ’ E such that a(p,p ’) = 2 • This implies that p fl p ’ — v E w53 .

- - 
~~~~~~~~~~ ~~~~~~~~~~ _______________ - ~V--- --- 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
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i.et U
1 ‘ ~~~ ‘ •~~~• ‘ ‘q+l be the (s-2)-dmmensional subspaces such

t:-~at v = u . C p , 1 < I < q+l . Let = < u1,pt 
> , 1 < I < q+1

Then 
~~~ 

i~ ‘ ‘ 2q+i are the only lines of it which pass

t’nr~u~Th p ’ and have distance 1 from p . Therefore, it satisfies

(f ’~ ). This establishes the lemma when q > 2 • For q = 1 , we take

= ( :. , , c) where Z.  is the set of i-element subsets of.:~-l 5 1

a d-set y , 0 < I < ~i • It is easily checked that it satisfies

the axion’~s (~‘i) - ( f5) .

In the sequel we will assume without loss of generality (wiog) that lines

are subsets of points . We assume that q is a fixed posit ive integer and

~~~~~ 3 rea ’ rr ribers satisfying 3 < s < d .-l and it is a pseudo projective

~ric.
’.1tn.~ ~~~Lure ~~~ s(it ) = s , d(it ) = ci , r(,t ) = r , k(n) = k.

I,ej :a~.a 3. i,et p and p ’ be two distinct points of it such

t hat d(p,p ’)  = 2 • Let L1 be the set of lines containing p and

at ‘Listance 1 from p ’ and let L2 be the set of lines containing

p ’ and at distance 1 from p • Then each line of L1 intersects each

line of’ L2

Proof: Let n E L,~ and n* = [z E n : d(z ,p) = 1) • Then In*l
equa)s the number of lines of L1 which intersect n . By (f3),

= (q + 1) and by (f1~), I L1t = q + 1 . Hence, each line of L1

intersects n

For a pair of lines in and ri , T(m,n) denotes the set of

transversals of in and n

~~~~ y~ijp ~~ 1~ • Let n and n be two distinct lines of it such that

d(n,n) = 1 • Then (i), d(p,m) = 1 for exactly (q + i) points p

of in and (ii), tT(rn,n)l < (q + 1)2

~ 

~~~~~~~~~~~~~ • ~~~~~~~~~~~ 
.
~ ~ ~ - - ~~~~~~~~ _________________________
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Prouf: Lince d(n ,n) = 1 , there exists points x and y

~ucb that x E ni , y € n and d(x ,y) = 1 • Since d(x ,n) = 1 ,

by (~~ ) t~ r .rp ex i~:t~ (q + i) points y0 = y ~ Y1 ~ Yq 
such

that d(x ,y . ) = 1 .  y . E n  and d ( y . , m ) = 1 , 0 < i < q .  If

:‘ossible , let y E n , y y. , 0 < I <q and d(y,m) = 1 • Then

~(x ,y) = 2 , 3 (x ,n)  = d(y, m ) = 1 and x € m , y E n . By Len~ a 14~

o and in must intersect whence d(m ,n)  1 1 • This completes the

proof of ( i )  and ( i i)  follows easily.

Let m and in be intersecting lines and x be the point of

intersect ion . We let

C(m ,n) = T (in ,n) U [h: h E L , x E h , h fl n ’ ~ 0

for some n ’ E T (in ,n )J

Lemma 5. Pasch ’s axiom is valid in (P,L).

For any pair of intersecting lines rn
~ 

and in2 ‘ IT(m1,m2 ) I  = (k-1)q

Proof: Let {x ~ = in1 C in~ . For each y E m.~ - x , y Is

adjacent to q vertices of m~ - x • So , q transversals of ni
~ 

and

contain y • Therefore, IT(m 1,m2 ) l  = (k-1)q. . Let in € T(m1,m2)

Let a E n P m
1, 

b E n C m2 , S
1 

be the set of (q-l) vertices of

- (x ,a) adjacent to b and 
~~2 be the set of (q-l) vertices

of m2 - jx,b) adjacent to a . Let h E T(m.~,m2) such that

(c} = h C in1 dS~. Then b and c are not adjacent . We get d(b ,c) = 2,

b E n , d(c,n) = 1 , c E h , d(b,h) 1 • By Lenuna 4 , n and h

intersect. It follows that if h E T(m1,m2 ) and h and n do not

intersect , then h C in
~ 

E . Similarly, h (‘
~ in

2 
E 
~2 

• Therefore -

the number of lines of T(m1,in2) not intersecting n is at most

= 

~i ~~~ 
. If q = 1 , (q~1)

2 
= 0 • Then a.U lines of T(m1,m2)

intersect n , so Pacch’s axiom is valid.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __________  -.----‘ —-e— ~~~~~~~ -- _____________
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• -
~ ~ — • :~c l J e , ~~~~~~ n ~~~ ‘i hr t~ i’ non— inter~ ect~ n~

n t  , :- ) . There are at least ~T(m 1,nt2 ) l — 2(q-l )2 
= (k_ l)q_ 2(q_ 1) 2

I n’s o ’ T(r
1,r .~ ) which intersect both in and h . Also, m1 and

in ntr ”~ or’t 1 td  ri and h . Hence , thc’ number of lines intersectin~

~~~~t : . n and h i~ at least ~q - 2q + 3q . On the other hand ,

~~~~ i1( n ,h)  = 1, by I,r u ~a 5 there are at most (q + 1)
2 lines

t er :-cct~X nj - ~ t i  n arid h . Th~ z i~ives us (q + 1)2 
> kq - 2q2 + 3q

2 ~.. 2 2:~~r : ’c~ 1 j •i- q + 1 > 3q and (q÷l ) > ~q - 2q + 3q .

the ~ne~~ :~~~ ty we ~et 1 > q w h i ’ -h  contradicts the assumption.

If ’ 2 a ~rt lines such that any two lines of S intersect

ra~ h nt ’. c - , then 2 is a clique in the line ~~aph of (F ,L ) ;  we

r ’~i’cr to such a ~et 2 as a cliq~e of lines.

Ley j:ia . ,~et and rr .~, 1r i ntersectir ~ lines . Then
C.

~~
(
~

- 
,,~~~~~~ ) 

a r: a>ira ~ clique of lines .

______ 
denote T(m1,m2 ) by T aixt i C(m 1,rr.9 ) by C

C r
2 • T is a clique of’ linoc , and so is C-T since

~ie~~’~ri~~~ t’ r~a d i  line of’ (‘—T • i~t Is sufficient to show

t hat. ~f h € C.-T ~nd n ’ E T, then h intersects n ’ . Since h € C-T,

x E h an !  h inter~-er :t r, in for some transversal in of in1 ~~~
- 

2 ay ass~~ c (by exchanging m1 and o~ if necessary) that

~ ~ 2 • ~~~~ h,n ’ E T(n,m2) 
. So , h and n ’ intersect.

: iOIi (•e C j~~ a c1t~ iy e ‘f’ lines . It is clear from the definition of C

t ~&. no proper s~iperset of C is a clique of lines.

2 .  ~ail earr  C (in 1,m
2 ) a plane , and let (~ be the set of planes.

;~ rollary 1. Each plane contains qk + 1 lines.

Proof: Let yr and n be lines which intersect at x • We show

that 1C(m ,xi ) l  = q~ + 1 • Let h E T(m,n) . By Lemma 6 every line

I f

~~~~ I 

_______________________________________________________
-~~ — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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~~~ ,
n)-T(~ ,n )  ~ntercects h , s~ f’(rn ,n)—T(m,n) is the set

of q + I lines which contain x and intersect h . ~T(m ,n)~ = (k=1)q.

l err a 7. ct K be a clique of lines, m,n E K (~ ~~ in) , and

C n • Then either all lines of K contains x or K C C(ni,n).

Proof: ‘2e assume that some line in ’ of K does not contain

x and show that K c c(m,n) . Let h E K • Then ii intersects

i’ , n, and n ’ • If x K , then K E T(rn,n) . So h E C(m,n). Next

suprose x E h . tiince h intersects n’ , h E C(ni,n). Therefore,

K ~ c(m,n).

Lemma .~~ ( i)  Each pair of intersecting lines is in a unique

plane. (ii) If the plane C contains at least 1 line containing

x , then C contains exactly q + 1 lines containing x . (iii) Each

line is contained in (r-l)/q planes.

Proof: (i) Let in and n be intersecting lines and the plane

C contain in and n . By Lemm a 7 C C C(m,n) . But all planes have

the sane cardinality, so C = C(m,n) • (ii) Let x E in E C • Let

n € so that x n • Then C = C(mn ,n) . Every line of C which

contains x also intersects in • There are q + 1 lines which contain

x and intersect in • One of these lines is in , and the renam ing q

lines are transversals of in and n , so q + 1 lines of C contain

x • (iii) Let m be a line. Choose x € m and let

be the lines containing x which are distinct from in • Each plane

whi ch contains in contains exactly q lines among m2,m3,...,m~

By part (I ) ,  each line iii
i 

is contained in a unique plane containing

in • Hence exactly (r-1)/q planes contain m

From Lemma 8 and Corollary 1, the following statanent is imnediate.

I 
_ _ _ _ _ _ _ _ _  

_ _ _  _ _ _  _____________________— .~~~—~~--• -
~~~~~~~~~~ ~~~~~~~~~~~~~ — ~ 

,— 
~~~ •— .— -• — *- .— — .. ~~_.•-~~~~~~~ ‘ ~~ —~~~~~.i’ ~ —~

-.--~~ ~—
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Corollary 2. (L,c~) is a semllinear ((r - ~ /q , qk + i) -

incidence structure.

For any plane C we define C = U in ,

m E c

Lexnina 9. Let m E L  and C E C .  If !m f l~~l > 2 ,then i n E C .

Proof: Let x,y E m C • Then for some n1 and in
2 
(n1,n2 ~ in)

x E E C and y E n2 E C • Lines in
1 

and n~ thteriect since

all lines of C intersect , so C = C(n1,n2) . Since in is a

transversal of in
1 

and n~ , in E C

Since each pair of intersecting lines is contained in a plane,

and each plane is a clique of lines, two lines contain a point in

common iff they are both contained in some plane. Therefore the

adjacency graph of (L,~ ) is ident ical to the line graph of (P,L)

Let H be the adjacency graph of’ (L,C-)

Lemma 10. If in and n are distinct lines then d
1~
(m ,n) = dG (m,n) + 1

If the line in is not contained in the plane C then d,~(m ,C) = dG(m ,~
) + 1

Proof: Let dG(m ,n) = ~~~~~ where in n • Denote at by at
0

and in by in1 . Let (m0,x3,m1,x2,...,xj ,xn j ) be a sequence of points

and lines such that is contained in m
11  

and in
1 

(1 ~ j < i)

Let C~ = C(m~~1~r n )  for 1 < j  < I • Then (mø,Ci,nhi,C2,...,Ci,mi)

-. is a sequence of’ lines and planes so that C
1 

contains 51
j1 

and at
1

(]. < j  < I), so d1{(m,n) < 1. • Since the direction of this argument

is reversible, we may conclude that dM (mn ,n) = d.~(m,n) + 1

Let in ~ C • Now d
G
(1n,

~
) min(dG(m ,n) : n E C) and

dH(ln,C) = min (dH(m,n) : n E c) . Since dH(m,n) = d~(m,n) + 1 for

distinct lines in and n , &d(m ,
C) = d

~
(m,

~
) + 1

- .. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - _.~& ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ 

-
~~~ 

-



Lemnina 11. (L,C-) is an (s+1,q,d)_pseudo projective incidence

structure.

Proof: We have already established that (L,C.) is a senilinear

(r*,k*)_incidence structure where r* = (r_l)/q. = (q
d_S

_1)/(q_1)

and k* = qk+1 = (qS+l_ l)/(q_ 1) . (If q = 1 then r~=(r_l)/q =

d-s and k* = qk+1 = s+1.) The graph H is connected since G is,

We prove (fI~.) . Let in and in be lines and d
H
(mn ,n) = 2 (so dG (nl ,n) = 1).

Let S = CC:C E C. , n E C~ , &g(m~C) = i) . We are to show ~~ = q + 1 .

Now S = Cc:c E C. 
, n E C. , in fl ~ ~

If h is a line and z a vertex so that dG
(Z,h) = 1 then

there exists at least two lines K
1 

and h
2 

so that z E h. and

h. intersects h (1 = 1,2) . The plane c(h.~,h2 ) contains both K

and z • For any plane C containing both z and h we have

1h 1 fl ~~ > 2 so h1 
E C (1 = 1,2), and consequently C = c(h1,h2)

Therefore fDr any line h end vertex z so that dG (z ,h) = 1 , a

unique plane conta ins both z and h

Lines in and ii do not intersect. So, no plane contains both.

Every plane S contains n and at least one point of’ at • Let

be the points of m satisfying dG(xj ,n) = 1 (0 < i < q )

Let C~ be the unique plane containing x1 and n (o ( I < q )  . If

for som e I and i (1 ~ j )  C~ C
1 

then ~mn 1’~ > 2 • By- Lemma

— 
9 this would Imply that at E C1 , which is false. Then S = (C~~C1~•s•~Cq) ~

so ~S~~= q + l .

To prove (f3), let &d
(m ,C) = 1 • Then &~(m,C) = 0 . So,

m f l~~~~~ Ø .  By Lienmna 9, Imfl~~1 = 1 .  Let (x ) . m(~~~~.

~ I 
We are to show that d.~(m,n) 1 for e~~ctly q + 1 1ine~ n of

C. In other words d
G
(mn ,n) — 0 for exactly q + 1 lines n of C

But this is clear, since exactly q + 1 lines of C contain x

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-... -~~~~~~ ~~~~~~~ ~~~ — . ~~~~~~~~~~~~~~~
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Lemma 12. Pasch ’s axiom is valid in (C.,L,?)

Proof: We first state Pasch’s axiom for (C.,L,~) , recall ing

that two lines intersect (i.e. contain a vertex in cctnlnom) 1ff’

they are both incident with some plane. Pasch’s eiciomn for (C., L,) )

states that if lines in and in intersect , and lines h1 and h
2

intersect both in and in but no plane contains ~~~ in , and n and

no plane contains h2, in, and in, then and K
2 

intersect.

Let txl = m C a • Now h1 9 C (ni ,n) , so h.~ ~ T(m,n)

3ince h1 9 T(mn ,n) but h
1 

intersects both at and in, x E h,1
Similarly x E h2 . Therefore h1 and h2 intersect, and Pasch’s

axioms is valid.

Let ~~ = ( ~~~: p E P )  where ~~ = [ p : p E L , p E m ) .

Lemruna 13. The mapping cx : P -. ‘ 
~ defined by cx(p) =

is a bijection.

Proof: The mapping a is clearly surjective. We show that

a is injective. (P,L) is a senilinear (r,k)-incidence structure,

therefore I~~ = r > 1 ~~~ Ix fl ~~ < 1 for all x,y E P. It

follows that x y for all distinct x ,y € P

Lemma l.~~ ~ U C. is a partition of’ the set of maximal cliques

of H

Proof: It is clear from Lemna 7 that every maximal clique

of lines Is contained In p U C. . We have shown tha t every plane

is a max imal clique of’ lines. Therefore it is sufficient to show

that x is a maximal clique of lines for every x € P , and that

~ and C are disjoint . ~ and C. are disjoint because the lines

of a plane are not concurrent.

— ~~~~~~~~~~~~~~~~~~~~~ — -  -‘ — ~ ~~~~ ~~~~~~_ -~~~~ i ~~~~ ~~~*
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• early x is a clique of l ines . Let K be

-. ~~~ ~ru~~ ~i .qu ,~~~- t a ~ :i~ n~ ~ . 1~ possible, let K • Let

E r. - - :“I I  x ~
- • By ( f3) ,  the n t.snber of lines of ~

• - r ~~ - ~t r’ ost q + 1 • Since Y is a clique of

~. r y  Li intersects m . Theref ore q + 1 > I~1 =
- 1. ~-:~ I ~~~. 

- 

~~‘ ‘r t r a d  ict on.

i~ ~~~~~~~~~~~~ - 17 ~-~e exar ine (s,q,d)—pseudo projective incidence

r~~~. 
- — 1.

I.~’:-ra i .  • ‘t (i~,1.) be a (d-l ,q,d)-pseudo projective incidence

~t rv ’ t~~r~~. T1 ”r~ ny t~r ’ lines intersect and if q = 1, I L j  = d.

______ 

(~,:~) is an (r,k)-incidence structure where r = q + 1

uni k (q~~~ -i )/ (q  - i) (
~~

. q = 1 then k = (1 - 1).

C r -  t~v~ ad~accncy graph of (P,L). Since G is connected,

t: r ~ ~ I~ tan -~~ i t ~i~~ n any two lines is finite. If not all lines intersect

r-- a~--’ 1 ~~ i~~~
- 

~i and in so that d(ri,n) = 1 • Asstm~e that

= ] .  Thr~n -
, 

- zorrc x E t~.,  ~(x ,n) = 1 . By (f3 ) q + 1

:n-~ ;erse~t n • Then these lines together with

- t~ite s lines containing x , which violates the condition

r ç ~ 1 • i’ :r ’L r~ ~ry two lines intersect.

r ’: r ’ E L . L n~~ k ( r- l )  lines intersect in and all lines

‘ x~l~~r:~
, ’ t , I L !  - i~~~ — i .) + 1 • If’ q 1 , k = d—1 arid ~L = d

- 
‘ -

~~~. ~~~~~ (P ,~~) he a (d-1 ,q,d)—pseudo projective incidence

> ~ an:1 q > 2 , and let the incidence structure

£ 
. (r~~~~~~) ~:~~~:— ~ ‘~r Pasch’ s axiom. Then

( )  
~ 

a ~
-‘ri~ e power and d is an integer,

(~~I )  L ’~ r l ’ d ~ nce structure dual to (P ,L) is a (2 ,q,d ) —  

~n .
~~~

.- 
~~~

.--- -~ ~~~~~~~~~~ ~ -.
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- n~ “ri t r u ’t i i r e ,

( i  : :)  (~ , :~) i s  a (d-l ,q,d)-projective incidence structure.

r r -- q ÷ 1 and some k , (P,L) is an (r,k)-thcidence

:~tr~1rt1~r~’.

.~~~ ‘ s~ ’~w ~- :~at ( ,i’,~~) satisfir’s the axioms (p 1) — (pa)  of

seet~on 1. t- ’~’ or enLs of L wiLl be ~‘a11ed points and elements of

p w11 l~ cr~.l i~ I nc. ’ . By ~er~-~a 1~’ any two points are incident

-.-~:t~ s~
-M- o line. T~o”.’1~-re (L,r ,~~) satisfies (p1). By hypothesis

(p3 ) is s a t i z f ’ ed. T~vcry element of’ P is Incident with q ÷ 1 > 3

elerients of L • f ’ i n~ r’ d 
~~
‘ 3 every element of L is incident

with ror’~ tha n q + 1 elements of’ P • It easily follows that rank

0r (P,L) is at least ~ • Therefore by the theorem about finite

p r c : r ~r ’t i v i ~ spaces (L ,P,E) is a (2,q’,d ’)—projecttve incidence

str ucture. Clearly we oust have q ’ = q and d’ = d • This establishes

(ii) ani (i). .1ince t (i—1 ,q,d)-projective incidence structure is

‘1ua~ to a (2 ,q,d)-project ive incidence structure ( I i i )  follows.

r iu~ 1:’. Let (P ,i~) be a (d-1 ,1,d)—pseudo projective incidence

~tr~~tnr~ where 
—
~ > 2 • Then d is an integer and (P ,L) is a

(~
_i ,l ,1)-prn~ective incidence structure.

I’ r” -l ’ :  (P , L ) is an (r ,lc) .- incidence structure with r = 2

and ~c -~1 • .~ ince  k is an integer , ~ is an integer . We examine

t i e  uuai inc ~~1exL c stuctur e (L ,P ,E). Elements of L will be called

uaJ. points and element s of’ P dual lines • Each dual line is incident

wj th exactly 2 dual points. Therefore dual lines are equivalent to

the edges of the adj acency grap h of (L ,P ,E). By Lemma 15, each pair

of’ dua l points i. -’ incident with some dual], line.

- - 
- ‘._!, t -~-~~~~

- -. -- - -- - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -. .-~~-• - __________
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-~~~~
‘ (L ,~’,~~) i:; the c~~~ lete graph on

= (~ :( ‘t - ” ~ . i,et ‘1 be a d - set and Z . be the set of
1

1 <
~~~~~-~~ • We have proved that (L,P,E) is

‘ s - i - rd t - - (y,:.~ ) • Therefore (P ,L) is isomorphic to

(: ,. ,y ,E )  an~ h ’j i’ - o (2’14 2 , Zd l ,  ~~
- . here z no (s ,q, d)-pseudo project~ ve incidence

~t~~~turc ,d”~r~ 3 and d— 2 s < d—l

Proof: ~.ss~~c ~~ -= (P ,L) is an (s ,q,d)-pseudo projectiv-e

incidence structure v~iere 3 < s and d-2 < s < d-l • If q = 1

then r(i~) = l-s+ 1 is riot an integer. Therefore q > 1 • Define

as in Lemmas 6 - II. Ly Lerm~a U = (L,C.) is an (s+l,q,d)_

pseudo projective 1n01(lence strucutre. r(~c*) = (qd_ S _l)/(q_ 1) so

1 < r(t*) < qil • Since r(~c*) > 2 and k(~t*) > 2 there exist

i~ and C E C so that in the adjacency graph of ~~* d(m,C) = 1.

By ( f3) ,  r(ri ) q+i • Since r(m) = r(,t*) the impossibility of

the assumed incidence structure i5 established.

—

•~r*~~ ~~~
‘ -

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 
—-----— - - - — - .—~ - ;-‘ - -



3. Proof of the Theorems.

The heart of the Inductive procedure for Theorem 1 is contained

in the next leimma .

Lezmna ].9. For j = 1 , 2 let

(i) B~ be a set ,

(ii) and C~ be sets of subsets of ~~

(iii ) the incidence structures (B~~ A
3

) and (B~~ C3
)

have the sams adjacency graph

(iv) A3 
U C~ be the set of maximal cliques of H3,

(v) A3
f l C 3 = Ø .

Let (Ba,, C1
) and (B2, C2) be iscmiorphlc. Then (A1, B~, 3) and

(A2, B2, )) are isomor’phic.

Proof. By hypothesis (B1, C1) and (B2, C2) are is~~orphic; let

a: B
1 

• B~ and ~ : C1 
-, C2 be bijections which preserve incidence.

For any B’ C B1 we let c(B’) = fa(b): b E B’); in partieu].ar, for

c € C1, a(c) = (a(b); b E c). Then c(c) = ‘r(c) fox’ aU. c E C1.

a is an iscmiorphIam between the adjacency graph H,
1 of (B~, C1)

and the adjacency graph H2 of (B2, C2). Therefore a Induces a

biject ion between the maximal cliques of H1 and th. maximal cliques

of H2. The set of maxima]. cliques of H~ is U C1 and the set of

I 
- 

19
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maximal cliques of H2 is A2 U C2. Since A1 fl C1 = 0 = A2 fl C2

and a induces a bijection from C1 to C2, a induces a bljection

from A1 to A2. Then the bijection a : B1 
-
~ B2 and the bijection

train A1 to Induced by a show that the incidence structures

(B1, A.1
) and (B2, A2) are isomorphic, and also that 

~A1’ B1,, ~) and

(A2, B2, ~) are isomorphic.

In order to shorten the proof of Theorem 1, we Introduce some

terminology. For q = 1 and a positive integer d, V will, denote

a finite d-element set. For q a prime power V will denote a d-dimensional
d ,q

vectorspace aver GF(q).  For q = 1. an I dimensional], object of

V will mean an i-el~~~nt subset of V~ . For q a prime power,d,q ~.i,q

an i-dimensional object of Vd,q will mean an i-dimensional subspace of

Vd . For 0 < I < d , W will denote the set of i-dimensional objects— — I

of Vd,q~

Proof of Theorem 1. Assume that there exists a counter example

to the statement of Theorem 1. Among all such counter examples we

choose an incidence structure if = (P , L, r )  for which r(if ) is as ~~~11

as possible . wiog we asaima that lines axe subsets of points. We

write s for s(~ ) and d fox’ d(if). Let ~~. be as in Section 2. By

Lemas U, = (L, cii) is an (a + 1, q, d) - pseudo projective inci-

dence structure. Note that r( if *) < r(*) and that the dual. of

satisfies Paach’s axiom by L 12. By Lemma 18, s < d  - 2. If

a < d  - 2 , then satisfies

~~~~- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘b.—, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

- —*-- . ~~~. .J*l —i*,i’~~~g~~
• ’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the hypotheses of the theorem and r(n*) < r(,~). Therefore is

an (s + 1, q, d) - projective incidence structure. If a = d- - 2, then

by Lennnas i6 and an (d - 1, q, d)  - projective incidence

structure. So in either case d is an Integer, q = 1 or is a

prime power and is isomorphic to (w5, w5,~1, C) where W1 is

the class of I dimensional objects of a V where i = s, s + 1.d,q

For w E W5~,1, let ~ = (U: u E W5 and u C w) and = ( :  w E w~ 1).

For v E W81, let w’ = (u: u € W5, u ~ w) and W~_1 = (v’: w E

It is easily seen that (w8, W5,,1, c) is isomorphic to (w5, ~~~~ and

(w 8,1, W3, C) Is isomorphic to (w81, W , 3). We now apply ~~~~~~ 19

with B1 W
8, C1 

= W
~~1

and A1 W~_1, B2 = L, C2 = C. and =

(w5, ~~~])and (w8, w~_1) have the same adjacency graph H~. W~_1 U

is a partition of the set of maximal cliques of Hi,. By the remark

after Lenina 9, (L, ~) and (L, ~) have the same adjacency graph H2.

By T~~~.tA ])l~~ P U C is a partition of the set of maxima]. cliques of H2.

Finally (L , C~) and (w5 , 
~~i+1~ 

are isomorphic. Therefore

by Leumia 19 (P, L, 3) and (w~ 1, w5 , 3) are

isomorphic and hence (P, L, I) and (w8_ 1, W5, C) are isomorphic.

Hence there is no counter example to the statement of Theorem 1.

Proof of Theorem 2. Wlog aaa~me that lines of it are subsets

of points . Consider the connected components of G(it). Let be 

— - 
~~~~~~~~~~~~~ - - -- ~~~~~~ ~~ ~~~~~~~~~~~~

--- --
~~ - 

-
~~
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the vertex set of the ith component, 1 < I <t. let L1 be the set

of lines of t~ which contain at least one point of P1, 1 < I <t.

Then p = p
1 U P2 U...IJ Pt and L = L~, U L

2 U...U Lt are partitions

and each line of L1 is a subset of P1, 1. < i < t. It is easily

checked that for 1 < I < t , (Pt, L1) satisfy the axioms (f 1) - (f 5 )

with respect to the integer q. Therefore for some integers s~, and d1

(P1, L1) is an (s .,q, d.)—projective incidence structure and ~ is

the direct s~mi of these incidence structure. The converse follows from

L~”.’~ 2.

-- —~.—------ - —— —~~~ —= ~~~-~“ - -- — ~‘- -.4.,JJ - -~ —~~~--~~~--- ~~~~~~~~~ -i~~~~~~~1 - - 
- -



~4 . Minimality of the Axioms.

Let . be the class of (s, q, d) - projective incidence structure

with ~ < s < d - 2 .  The axioms (fi) - (f5) form a mlnimal set of

axioms for the purpose of characterization of the class P. We now

demonstrate the minimality of the axiom set (fl) - (f5) . For

j € (1, 2, 3, ii , 5) we choose q and construct an incidence structure

it ’ which satisfies the four axioms other than (fj) and is not a

member of P. For j  = 5, we saw that the direct awn of two

(s , q, d) - projective incidence structures ( 3  ~ a 
~~ 
d - 2) satisfy

the four axioms other than (f~ ) . For j  = 1, our example is a nondesarguesian

finite projective plane it of order q. It is easy to see that it

satisfies the axioms (f2) - (f5) and that s(,t) = 2. SInce it is

non desargueslan, it is not an (a, q, d) - projective incidence

structure. For j = 2, we construct an example as follows • Let q be

a given pr ime power. We choose positive integers a and d satisfy ing
2 8 1 , d-s+1 1~

3 < s < d - 2  and (2q+1) ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘)

Let it be an (a, q, d) - projective incIdence structure. The point

set of the incidenc e structure it ’ will be s~~~ as that of it and for

each line f of it , it ’ will have two lines ~ and £‘ with P~ = P1,.
a d-s+1

It is easily checked k(it’) = and r(it’) = 2~~ q.l • Therefore

wi th respect to (2q+l), 3 < s(,t ’)  < d( it ’)  — 2 and also it ’ satisfies

(f3), (ff4) and (f5) w.r.t. 2q+l. Clearly it ’ is not a member of 13 and is

not an (s, q, d) - projective Incidence structure. For 3 = 3, we

proceed to construct an example as follows • Consider an affine space

23 
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2~i.

Aff(n, q) where q is a prime power, and q2 + q + 1 <
g _ 1  

. Let

be an incidence structure whose points are the planes of the affine

space and lines are the 3-spaces of the afflne space and incidence Is

containment. Points and lines of ~r will be respectively called Idea].

points and ideal lines. It will be helpful to view the aff Inc space as

a projective space m(n, q) minus a hyperplane E. The nimiber of

planes contained in an affine 3-space is q3 + q2 + q. Therefore
n-2

k ( i - )  q3 
+ q’ + q and r(it) = q 

q-;’ . For an ideal point r and an

ideal line 2, p’ and 2’ will resp ectively denote the corr espond ing

projective plane and projective 3-space. The axiom (fi) is satisfied

by it ’ . Clearly (f2) and (f’5) hold for it ’ . Let p
1 and p2 be

two ideal points such that d(p1, p2) 2. Then p1 and p2 are affine

planes (Figure 1). Since d (p1, p2) = 2, there exist an ideal point p
3

such that d (p1, p3
) 1, 1 = 1, 2. Hence (pt , p~) Is a 3-space for

I -
~ 1, 2. Therefore p~ fl p~ is a line for ~ = 1, 2. Therefore

pj, fl p~, is a point 0. Let 2 be an Ideal line such that p1 is

incident with 2 and d(p2, i) = 1. Then 2’ is a projective 3-space

such that ~ 2’ and p~ fl 2’ Is a projective line passing through

0. Let x1(1. 
- 0, l, . . . , q )  be the project ive lines of p~ passing

through 0. Then letting L~, = (pj, x0), 0 < I < q, 2~ 0 < i < q

are all the projective 3-spaces satisfying ~j, C 2’ , p~ fl 2’ = a projective

line . The corresponding affine 3-spaces ~~ 0 < I < q  are all the ideal

lines satisfying d (p1, 2) = 0 and d(p2, 2) = 1. We proved that it ’

satisfies (fli ) w.r.t. q.
a

I _________________ 
_____________ ____  

_ _ _ _ _ _ _- — ~ -~~~~~~~~~~ - ~~~~~~~~ 
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2~i

Aff(n, q) where q Is a prime power , and q
2 + q + 1 . Let

be an Incidence structure whose points are the planes of the affine

space and lines are the 3-spaces of the affine space and incidence is

containment . Points and lines of it will be respectively called ideal

points and Ideal lines . It will be helpful to view the affine space as

a projective space m(n, q) minus a hyperplane E. The nwnber of

planes contained in an affine 3-space is q3 + q
2 

+ q. Therefore

k(it ) - + + q end r(it) . For an ideal point ~ and an

idea]. line 2, p ’ and 2’ will respectively denote the corresponding

projective plane and projective 3-space. The axiom (11) is satisfied

by it ’. Clearly (f 2) and (f5 ) hold for it ’ . Let p1 and p2 be

two ideal points such that d(p1, p2) = 2 • Then p1 and p2 are aff Inc

planes (Figure 1). Since d(p1, p2) = 2, there exist an ideal point p
3

such that d(p1, p3
) 1, i = 1, 2. Hence (pt , p~) is a 3-space for

1 -
~ 1, 2. Therefore p~ fl p~ is a line for I = 1, 2. Therefore

pj fl p~ is a point 0. Let 2 be an ideal line such that p1 is

Incident with f and d(p2, i) = 1. Then 2’ is a projective 3-space

such that ~ 2’ and p~ fl 2’ is a projective line passing through

0. Let x1(I 0, l,...,q) be the projective lines of p~ passing

through 0. Then letting 2~ = ~~~ x0), 0 < I < q, 2~ 0 < I < q

are all the projective 3-spaces satisfying p~ ~ 2’, p~ 
fl 2’ = a projective

line. The corresponding affine 3-spaces L~, 0 < I < q are al]. the ideal

lines satisfying d(p1, 2) 0 and d(p2, 2) = 1. We proved that it ’

satisfies (f1i ) w.r.t. q.

_____________________ 
~~~~~~~~~~~~~~~~~~~~~~~ -.- .-~~~~~ - - - 
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- I
, - TI ,p1 

p
2 r].

—a

• / —
---

0 - 
or -

F’i~ ure 1

We now show that (f~
’ 

~oes not hold in it ’ . Let 2 be an ideal

line and p be an ~~~~. point such that d(p, p) = 1. Let p ’ and 2’

be the corresponding projectlve plane and 3-space respectively . Sir~ e

d (p, 2) 1, p ’ fl 2’ must be a pro ject lve line . Case l.(Figure 2) p ’ ~ 2’ y

Is a project ive line contained In ~~. There are (q + 1) planes of 2’

which contain y. Of these one is 2’ ‘~ ~ which does not correspond

to an Ideal point of i t .  Therefore In case 1 there are q idea]. points

p1 such that p1 is Incident with 2 and d(p, p1) = 1, 1 < I < q.

Case 2.(Figure 3) p ’ ~ I’ = y is a projective line not contained in E . In this

case there will be (q + 1) ideal points p1 such that p1 is incident

with ~ and d(p, p1) 1 0 < I <q. With respect to q, it ’ satisfies

all the four axioms except (f 3) and it ’ 
~~ P

‘fl i? 1’

E 

- 

2 

E 

-

~~~ ~/

Fi gure 2 Figure 3

- ~~~~~~~~~~~~~~~~~~~~ --- ~~~~~J---=
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We now consider j = i~ • Let q be a prime power, n > ~4, PG(n , q)

be an n-dimensional projective space over GF (q) and En_3 be an

(n-3)-flat of ~~(n , q ).  Let it ’ be an incidence structure wtiose point s

are the lines of m(n, q) not intersecting Zn 3  and lines are the

planes of PG(n, q) not intersecting E~~3
. As before points and lines

of it will be referred to as ideal points and ideal lines respectively .

Lines and planes of R(n, q) will be called projective lines and pro-

jectlve planes. Clearly every ideal line Is incident with q
2 

+ q + 1

Ideal point and hence k(it) = q2 + q + 1. The number of projective
n-i

planes of PG(n, q) cont aini ng a given project lve line is

Of these projective planes will intersect 
~r~.3

• }len:: the

number of ideal lines passing through a given ideal point is q

Since n )- i , the axiom (22) holds for it ’ with respect to (q - 1).

Clearly (f 2) and (f5 ) hold for it ’ • We now check (f3) for

it. Let p and 2 respectively be an ideal point and en ideal line such

that d(p, 2) 1. Then the projective line p intersects the projective

plane 2 in a projective point 0(Figure I~). Let E~~1= (~,E~~3) bethespan

of p and 
~n-3 

and p0 = 2 r~ 
~n-r 

There are q + 1 projective

-~ 
lines of 2 passing through 0. Let P0~ P1jp ~~ Pq be these lines.

The projectIve plane (p, p0) ii contained In ~~~~ intersectS E~~3

and hence is not an idea]. line of it. Therefore the distance between

the ideal points p and p0 is greater than 1. The ideal points

-t 
_ _  _  _— — - -i- ?1...  -- — - - - - _________
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Pi~ ~Pq are the on3.y ideal points p satisfyi ng p1 C 2 and

d(p, p1) 1, 1 < I <q. Therefore it satisfies (f3 ) with respect

to (q - i)

P / S

E -
n-i

En 3
- - Figure ~.

We now show that (fl ) does not hold In it ’ • Let

p1 be an ideal point and (E~~3~
p1) = E~~1 

Let p2 be an ideal

point such that d(p1, p2) = 2. Case 1. p2 Is a projective line not

intersecting p1 and E~~3 
and not contained in E~~1 (Figure n- ) .  Let x.,OKi<q

be the q + 1 points of p2 where x0 E E~~1, ~~~~ L~ = (p1, x1
),

0 < i < q. The projective plane intersects En 3~ 
In this case

are the only ideal lines which contain p
1 

and have distance

one from
p1 -.

- p2

En i  L
~ -

aj -
. 

En_3 

- -

FIgure 5

— ~~~—rr~ -, - — ~~~~~~~~~ ~~ - - ._. -~ ~~~~~~~~ — - - — -
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Case ~. The projective line p2 intersects p1 and Is contained in

‘r
1 (Figure~~). The projective plane (p 1,p2) intersects En_3 and hence is

not an ideal line. Therefore d(p1, p2) = 2. let L~ be any

projective plane which contains p1

1
E
n-l 0

p2 /

: E -
-n— 3

Figure ~~-

and is not contained in E~_1. Then it is easily seen that p1 ~ 
2i ~~~

d(p2, Li) = 1. In case 2 the number of ideal lines I satisfying p1 ~ 2,

d(p2, ~) 1 is qf l 2
• Therefore (fl ) does not hold in it with respect

to (q - 1). ObvIously it ’ is not a (s , q - 1, d) - projective incidence

structure for any choice of s and 4.

This completes the proof of the mini ~~1ity of the system of axioms

(fl) — (f5).

Coricinding Remarks. - Consider a simple graph whose vertices are s-dimensional

subspaces of a 4-dimensional vector space V over GF(q). Two vertices

- , in this graph are adjacent iff the correspondi ng s-di nsional subspaces

intersect in an (s-1)-dimensional subspace. This graph will be called — -.-~

H
- -r —-. .— - - ~~~_ 1_ ~~~ 

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
-
~~~~~~~~~

-—
~~~~~

--. - - 
- 

- 

—
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an (s , q, d)-project lve graph . The Theorem 1 of this paper can be used

to obtain a characterization of the (s, q, d)-projective graphs provided

d Is larger than sorr~ function of $ and q. We are also considering 
-

characterization problems of Affine spaces and Polar spaces in~erms of

flat s of higher dimensions. These results will be comnunicated in a

subsequent coe~ iunIcation.
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